
Chapter 4

Cultural Di�erences

In this chapter I will give an introduction about the e�orts, that have to be made to

localize, in this case to japanize, software. I will show the main di�erences and in the

next chapters I will introduce the reader to possible solutions (starting from 163).

4.1 Introduction

The general di�erence between the European/American culture and the Japanese

culture is not only that Japan is an Asian country. It is, based on the di�erent

culture and religions, also the way they do the things the do. This is a�ected not only

by the Japanese " modus operandi ", it is also e�ected by the environment, which is

given by their tradition, language and writing. Some people refer to this as "Japanese

language problems" (see [31]), but I think that only we got the problems and not the

Japanese. That means that we have to modify our software if we want to sell it on

the Japanese market.

So let us have a closer look on the requirements for the localization / internationa-

lization of a software product for the Japanese market (see [2, 1]) :

� Numbers, the representation of numbers, decimal separator, . . .

� Currency, representation of the currency, average number of digits, decimal

separator.

56

CHAPTER 4. CULTURAL DIFFERENCES 57

� Date convention, which date convention is used. How is a date represented? Are

there other calendars then the Gregorian calendar used.

� Character set, the use of alphabet & numerals (the roman alphabet is called

Romaji), Hiragana, Katakana and Kanji; special characters, double & single

byte character sets. Special requirements like :

{ input methods (e.g., Keyboard, Pen) for Hiragana, Katakana and Kanji.

{ storing of characters as 1 or 2 Byte code (SBCS, DBCS)

{ displaying and printing characters

{ di�erent standards for representation of character sets

� paper size

� units, etc.

� Manual, On-line help, support and telephone hotline should be in Japanese,

e.g., a local o�ce in Japan

� programming language (application) should be able to handle the Japanese

character set

� To provide the right service for Japanese customers

In order to do this you need a knowledge about the cultural specialities which apply

in the Japanese language environment. I will give you an overview on the next couple

of pages.

CHAPTER 4. CULTURAL DIFFERENCES 58

4.2 Japanese Character Sets

When the Japanese started to build the �rst computer systems back in the 1960s the

followed the example given by the US computer industry (see [3]). This �rst computer

types where build like US models and used the same type of character set called ASCII

(see �gure 4.1, page 65). It was, for the stage of technology at this time, quite di�cult

to handle the speci�c Japanese character sets like the syllable alphabets Hiragana and

Katakana or the thousands of ideographic Chinese characters called Kanji. This type

of computer systems where not very sophisticated for the Japanese computer user.

As mentioned before it is possible to write Japanese names and addresses in Romaji

but it makes it very di�cult to read a Japanese text, written entirely in Romaji. The

Japanese use Kanji characters which are ideographic characters. This means that

Kanji characters (or a combination of them) represent an idea, meaning or thought.

It would be possible to write down the pronunciation but this is quite di�cult because

there are di�erent systems to transliterate a Japanese Yomi (pronunciation) to the

roman (Romaji) characters (e.g., Hepburn, Nipponsiki; see �gure 4.2 starting from

page 69). A Kanji character could have so di�erent spellings depending on chosen

transliterating system. Besides that a Kanji character could have di�erent Yomi's

(see c in �gure 4.38 on page 125) or a Yomi could have di�erent Kanji characters (see

b, meiji, in �gure 4.38 on page 125) depending on the meaning. This makes it very

di�cult for Japanese to use only Romaji.

4.2.1 ASCII and Katakana

The next step of the Japanese computer industry was to adapt the Katakana alphabet

to the computer character set. This had some reasons, like :

� only a limited number of characters

� useful to express foreign and Japanese " words "

� relatively easy to implement on a computer

� depending on their shape they are easy to print or display

CHAPTER 4. CULTURAL DIFFERENCES 59

� does not require a Font End Processor (see page 115) for the input of the

characters. It is easy to realize with a new level of characters on a standard

keyboard (e.g., see �gure 4.7 on page 74, [28]).

To implementKatakana characters was the easiest way to add, at least some, Japanese

capabilities to a computer system. It has only a limited number of characters (which

where �tting in the space above 127 decimal, 7FHex) so that it was possible to use

the 7(8)-bit architecture. You could get along without major changes (see �gure 4.9

and 4.10 on page 76 and 77). This one byte code (Single Byte Character Set, SBCS)

is called JIS X0201-1989 (the name changed, march 1987, from the old name JIS

C6220-1976) and describes an enhanced ASCII character set which includes Katakana

characters. The use of this Katakana character set has the advantage that, through

the limited number of characters, it is possible to use a standard keyboard and shift

between ASCII and Katakana input (see �gure 4.7 and 4.8 on page 74 and 75, [28]).

This keyboard layout is naturally de�ned by an own standard called JIS X6002-1984

(or the predecessor JIS C 6233-1980). On the keyboard layout appear the 52 small

and capital Roman alphabet characters, ten numerals, 32 special characters (like !,

$, &, @, +, -, etc.), 8 Japanese special characters, 17 control characters (like CR,

LF, ETX, DEL, ESC, . . .) and 55 Katakana 1 characters. A standard de�nition does,

unfortunately, not mean that everybody has to follow this de�nition. This causes that

there are di�erent keyboard layouts available.

7-bit JIS

This code exists in a 7-bit and a 8-bit version. The di�erence between the versions

is that in the 7-bit (from 00 to 7FHex) version a Shift In (SI, 0FHex, sometimes

called Kanji In (KI)) and a Shift Out (SO, 0EHex, sometimes called Kanji Out (KO))

character is used to shift between the ASCII and Katakana code table. This means

that the system starts printing ASCII characters until it runs over a SO. All following

characters are printed as Katakana characters. This stops when the system �nds a

SI, which switches back from Katakana mode to ASCII mode. The use of a SI and

SO character to switch between code tables could cause some problems which I will

later explain more in detail.

1Which is actually not the complete set of Katakana characters

CHAPTER 4. CULTURAL DIFFERENCES 60

8-bit JIS

This problem does not occur when your system is able to use the 8-bit version of the

JIS X0201-1989. In this case the system must be able to work with 8-bit characters

(called " 8-bit clean ", which was not always possible, e.g., in early implementations

of UNIX, they sometimes used the highest bit as a parity bit). With the 8-bit version

you do not have to use the SI and SO characters to switch between the ASCII and

Katakana code table. The Katakana characters are just located in the, former unused,

area above 7FHex.

The use of this area could cause some problems when you work with, e.g., American

IBM PC software. The IBM PC has a totally di�erent codetable in the area between

7FHex and FFHex. If you start using foreign software it could (or de�nitely will)

happen that a screen mask looks very funny because instead of line-elementsKatakana

characters appear. This results in a nearly ASCII compatible character set. In the 7-

bit version one of the code tables is nearly compatible to ASCII. In the 8-bit version

the area below 7FHex is nearly compatible. The only di�erence, which makes the

character set just nearly compatible, is that the backslash (n, 5CHex) is replaced by

the Yen symbol (see picture d in �gure 4.32, page 114). The second replacement is the

tilde (~ , 7EHex) which is replaced by the overline (�). All other characters correspond

to their ASCII equivalent.

These Katakana characters have the same size as an ASCII character. The Katakana

characters in this size are called half-width Katakana (in Japanese Hankaku). Still

this was not a very sophisticated solution for the early Japanese computer users. The

lack of Kanji characters was one of the important points which made them start to

think about how to integrate Kanji characters into computer systems.

4.2.2 Development of Kanji Character Sets

To understand the following development of the Kanji character code set we have to

have a look on non-electronic (see [8]) character sets which where used to de�ne the

JIS C 6226-1978. Which was leading towards JIS X0208-1990, the standard today.

The Japanese have about 40000 to 60000 " known " Kanji characters. The problem

with that is that nobody is able to remember all of them. The Ministry of Education

CHAPTER 4. CULTURAL DIFFERENCES 61

started to restrict the number of Kanji characters for the use in education. Today a

Japanese student learns about 2000 Kanji characters.

The historical development of the standard was started with the table of sanctioned

Kanji characters for education. This �rst table was called Toyo Kanji and contained,

in 1946, 1850 Kanji characters. This table was replaced by the Joyo Kanji character

table in 1981. This table contains now 1945 Kanji character (see �gure 4.11, page 78).

The other tables which where used to form the standard character set are the Gakushu

Kanji (replaces the older Kyoiku Kanji table with 881 Kanji characters) with 1006

characters (increased in 1992 from 996 Kanji characters) and the Jinmei-yo Kanji

character table which has since 1990 284 characters (increase from 85 characters in

1946 to 112 characters in 1976 then to 166 characters in 1981). An interesting fact is

that Gakushu Kanji is a subset of Joyo Kanji (see [8]).

Double Byte Character Sets

This non-electronic character sets where used to de�ne the actual DBCS character

set standard JIS X0208-1990. Besides the Kanji, Hiragana (83) and Katakana (86)

characters the standard includes alphanumeric characters (10 numerals, 52 Roman

characters), special characters (147 symbols), Greek (48) and Russian (66) letters and

rule line elements (32). During the years there where some changes (X208 was �rst

established 1978, the �rst change occurred 1983, the actual version is from 1990) which

added some new Kanji characters, changed the shape of some characters or a change

in the positions of some characters has taken place. Today this standard contains

two levels with 2965 characters in level 1 and 3388 characters in level 2. In 1990 the

JSA introduced a supplementary DBCS character set which is called JIS X0212-1990

(sometimes referred as JIS level 3) with additional 6067 characters. In addition to

5801 Kanji characters this standard contains 21 special characters and 245 Latin

(Roman), Cyrillic and Greek characters (mostly with diacritical marks, characters

like, e.g., German Umlauts, the French, Spanish or Danish special characters). This

leaves us with a total number of 12156 standard characters, divided into three levels.

Regarding the fact that JIS X0212-1990 is a very young standard the most systems

use only the characters de�ned by the JIS X0208-19XX standard (see [25], [26], [27]).

Nevertheless that this tremendous number of characters needs a lot memory. It is also

impossible to represent this characters by using a SBCS. In order to represent this

CHAPTER 4. CULTURAL DIFFERENCES 62

huge number of characters we need at least a Double Byte Character Set (DBCS).

In a standard 7 (or 8) bit environmentwe could use a character set which contains 127

(or 255) characters. This is enough to carry a standard ASCII character set and some

national extensions, but it is not big enough to handle thousands of ideographic Kanji

characters. In order to handle the tremendous number of characters we have to extend

the number of bits which hold the character information. In a 7-bit environment a

logical step is to use two 7-bit bytes (14-bits) to hold the information this would give

us the possibility to store up to 214 (16384) characters. If we use two 8-bit bytes we are

able to store up to 216 (65536) characters. The arising problem is how to distinguish

between SBCS characters and DBCS characters. In order to stay compatible with the

old SBCS character set you have to �nd a solution to determine if the actual byte is

a SBCS character or belongs, as a part of it, to a DBCS character.

Shifting between SBCS and DBCS

Again, as mentioned above, it is possible to use the Shift In / Out mechanism to

distinguish between SBCS and DBCS. This is quite useful in a 7-bit environment.

Also it could be used in an 8-bit environment. Another possibility, in an 8-bit envi-

ronment, is to use the MSB (Most Signi�cant Bit) as a ag to show that this byte is

a SBCS character (MSB = 0) or a part of a DBCS character (MSB = 1). A SBCS

could look, in binary representation, like 0XXXXXXX and a DBCS would look like

1XXXXXXX 1XXXXXXX. Today the most large or medium sized systems uses a

SI/SO (or KI/KO) sequence to switch between SBCS and DBCS characters. There is

a recommendation from the JSA for this SI/SO sequence, but unfortunately the most

hardware vendors have chosen di�erent SI/SO sequences (usually between one and

three bytes). Some examples for the SI/SO (KI/KO) sequences for New-JIS, Old-JIS,

NEC-JIS, Lets-J, JBIS, JEF and IBM EBCDIC you will �nd in �gure 4.1 (on page

66, [8], [9]).

Sometimes there are two di�erent SI/KO sequences. One sequence switches back to

the JIS-Roman character set. The other SO/KI sequence switches back to the ASCII

character set.

Not only the SI/SO (KI/KO) sequences di�er between the di�erent implementations

of a Kana/Kanji character set, also the location in the matrix which is de�ned by

CHAPTER 4. CULTURAL DIFFERENCES 63

the two bytes. Moreover some companies (like IBM) even do not use the JIS de�ned

standard (for some examples see table 4.2 on page 67).

Starting from page 79 you will �nd the two byte matrices from di�erent Kana/Kanji

character sets. If you have a closer look on these matrices you will recognize that

all vendors placed the JIS area or the extension area at di�erent places. Although if

the matrices are on the same place it does not mean that the same Kanji character

appears at the same place. In the Japanese PC world the Shift JIS is the standard

for the character set. This version of the JIS character set was moved to a di�erent

location (see �gure 4.18 on page 85) because on this location it was possible to use the

old 7-bit character set and the DBCS without a SI/SO (or KI/KO) sequence. In Shift

JIS all 7-bit characters (SBCS) have the MSB set to 0 and look like 0XXXXXXX. If

the MSB is set to 1 the byte is a part of a DBCS character (it looks like 1XXXXXXX

1XXXXXXX). An advantage of the Shift JIS design is that it is very easy to convert

a JIS DBCS code to the corresponding Shift JIS DBCS code. To do this you could

use the following formula ([7]) :

Shift JIS and JIS

SJIS is the two byte representation of the Shift JIS code and JIS the two bytes of the JIS

code. SJIS1 is the �rst byte and JIS2 is the second byte of the code. The value for the bytes

is between 00Hex and FFHex

SJIS1 = (JIS1 - 21Hex) / 2 +81Hex

if SJIS1 � 9FHex then JIS1 = JIS1 + 40Hex

if odd(JIS1) then begin

SJIS2 = JIS2 - 21Hex + 40Hex

if (SJIS2 � 7FHex then SJIS2 = SJIS2 + 1

end

else SJIS2 = JIS2 - 21Hex + 9FHex

The Shift JIS is mainly used in the PC world and in few workstations. The most

vendors o�er conversion routines between their own code set and JIS and Shift JIS.

Another fact about the di�erent character sets is that the user de�ned characters

are placed on di�erent locations in the two byte matrices. The number of the, so

CHAPTER 4. CULTURAL DIFFERENCES 64

called Gaiji characters, di�ers in each of the vendor's implementations. These Gaiji

characters are needed because some Japanese names are written with "nonstandard"

Kanji characters. If an, e.g., insurance company wants to print an invoice with the

name of the customer it is common practice to use a user de�ned Gaiji character for

this purpose (when the name of the customer contains a Kanji character which is not

available as a JIS standard character).

4.2.3 Japanese Character Set Mess

When Fujitsu started 1978 ([9]) to introduce their main frame implementation of

Japanese language processing nearly every vendor has introduced a di�erent DBCS

character set (some even more then one DBCS, see table 4.3 on page 68). Some

European companies used an even more outer space approach, by designing totally

incompatible Japanese character sets. Actually does this policy not increase the chan-

ces for selling software.

Even if all of them support JIS of Shift-JIS via conversion routines none of the

systems is compatible to an other system. This leaves us with some problems for the

japanization of foreign software. For each hardware platform you have to check the

implementation and make (even slight) changes to adapt to this vendors' platform

and DBCS character set.

CHAPTER 4. CULTURAL DIFFERENCES 66

Standard Kanji In Kanji Out (JIS-Roman) Kanji Out (ASCII)

New-JIS (1983) ESC $ B ESC (J ESC (B

Old-JIS (1978) ESC $ @ ESC (J ESC (B

NEC-JIS (1978) ESC K ESC H n/a

Lets-J 93HexF0Hex n/a 93HexF1Hex

JBIS 2BHex (SOK) n/a 2CHex (EOK)

IBM EBCDIC DBCS 0FHex n/a 0EHexy

JEF 28Hex n/a 29Hexy

JIS X0201-1976 0EHex SO n/a 0FHexSI

JIS X0202-1984 ESC (I z

Table 4.1: Di�erent SO/KI and SI/KO codes

y= switches back to EBCDIC

z= switches to half-width Katakana

CHAPTER 4. CULTURAL DIFFERENCES 67

Company JIS Extension

IBM (Host) No EBCDIC, IBM Basic Cha-

racter set (3572 charac-

ters), IBM Extended Cha-

racter set (3483 characters),

IBM user (free) region (4370

characters)

IBM (PC) Yes y 1880 User de�ned

characters

AX Consortium Yes y 448 User de�ned Hankaku

characters, 752 User de�-

ned Zenkaku characters and

1024 Zenkaku characters de-

�ned in hardware

JEF (Fujitsu) Yes EBCDIC, 4039 Extended

Kanji characters, 1083 Ex-

tended Non-Kanji charac-

ters, 3102 User de�ned

characters

DEC Yes DEC JIS

Extension up to 9621 User

de�ned characters

LETS-J Yes Yes z

JBIS Yes Yes z

Hitachi Yes Yes z

NEC Yes Yes ddag

Table 4.2: Support of JIS standard character set

y= Shift JIS (see �gure 4.18 on page 85)

z= No information provided

CHAPTER 4. CULTURAL DIFFERENCES 68

Vendor DBCS Implementation

Fujitsu JEF

JEF II

Hitachi KEIS

NEC JIPS

UNISYS LETS-J

JBIS

IBM EGCS (old)

DBCS (SAA)

PC-World Shift-JIS

UNIX EUC

Table 4.3: Di�erent DBCS Implementations

CHAPTER 4. CULTURAL DIFFERENCES 86

4.2.4 DBCS Problems

If a system uses SBCS and DBCS character sets you have to be aware of some arising

problems. If you use only SBCS characters you could work like in the " normal " ASCII

environment (performing byte oriented operations). It is the same if you work only

with DBCS characters. The trouble begins if you start to use mixed strings containing

SBCS and DBCS characters.

If your system (operating system, programming language, application) is able to

handle both types of characters you have to be aware that the Japanese DBCS cha-

racters (Zenkaku) have the double width of a standard ASCII SBCS or JIS SBCS

(Hankaku). If you, e.g., design screen masks or reports you have to consider that the

Japanese user could enter both SBCS and DBCS. In the following example's S refers

to a SBCS character and DD refers to a DBCS character.

First an example of a SBCS character string :

S S S S S (length 5 Bytes)

Now a �ve characters long DBCS string :

DD DD DD DD DD (length 10 Bytes)

Here you will see a �ve character long mixed string :

S S DD S DD (length 7 Bytes)

As mentioned above the length of all strings is �ve characters, but the actual length

of the displayed string is di�erent. If you design a screen mask or a report you have

to take this in consideration and make your design so that it is able to handle all

three types of strings (SBCS, DBCS and mixed strings). A programming language or

application has to be able to handle strings with SBCS and DBCS. For example, the

database systemOracle, uses no special data type for DBCS characters. The Japanese

version of Oracle is able to handle DBCS characters. If you create a table with a 20

character long data �eld, this �eld could accept SBCS and DBCS characters as input.

You could enter up to 20 SBCS characters or up to 10 DBCS characters (2 byte for

each character). If you enter a mixed SBCS/DBCS string the maximum length can

not exceed the length of 20 byte (a mixed string could contain, e.g., 10 SBCS and

5 DBCS characters which represent a 20 byte long string). This strategy has the

CHAPTER 4. CULTURAL DIFFERENCES 87

advantage that you not have to change the de�nition of a table. In addition the

screen mask and report layout have not to be redesigned. It gets even more di�cult if

your system uses SI/SO (KI/KO) sequences. The same example with SI/SO sequence

would look like this :

The �rst example with a �ve character SBCS string :

S S S S S (length 5 Bytes)

Now again a �ve characters long DBCS string with SI/SO sequence :

S

I
DD DD DD DD DD

S

O
(length 12 Bytes)

A �ve character long mixed string with SI/SO sequence would look like :

S S
S

I
DD

S

O
S

S

I
DD

S

O
(length 11 Bytes)

You will recognize that the strings become longer through the use of the SI/SO

sequence. The SI/SO sequence will not be displayed on the screen, but it makes the

string, at least two bytes (depending on the implementation of the vendor), longer.

In addition the use of a SI/SO sequence makes it more di�cult to handle, e.g.,

string operations. These operations are operations like cursor movement, backspace,

wrapping of strings, deletion or insertion and windowing.

First I will explain the handling of strings with a SI/SO sequence and later I will give

you some examples about the handling of mixed strings without SI/SO sequence. The

di�erence between the handling is that you have to be aware of the SI/SO sequence.

It is easier to handle strings without SI/SO sequence but also here you have to be

aware of the di�culties in the handling of mixed strings.

Handling of mixed strings with SI/SO sequence

If you press a cursor key to move forward or backward through a string the system

has to increase or decrease the pointer of the actual cursor position. This would look

like this :

S S S S S

cursor right (!) pressed once

S S S S S

CHAPTER 4. CULTURAL DIFFERENCES 88

cursor left () pressed once

S S S S S

This works quite �ne in a SBCS environment which works byte oriented. If we now

have a look at the DBCS string, we will see that we no longer can use the byte

oriented approach. In order to handle DBCS correctly we have to use a character

oriented approach :

byte processing character processing

S

I
DD DD DD DD DD

S

I

S

I
DD DD DD DD DD

S

I

cursor right (!) pressed once cursor right (!) pressed once

S

I
DD DD DD DD DD

S

I

S

I
DD DD DD DD DD

S

I

cursor left () pressed once cursor left () pressed once

S

I
DD DD DD DD DD

S

I

S

I
DD DD DD DD DD

S

I

In the byte oriented approach the cursor does not move to the next character if you

press it once. It moves from the �rst byte of the DBCS character to the second byte.

Only in the character oriented version the cursor moves to the next character.

This gets even more complicated if you have to handle mixed strings which contain

SBCS and DBCS characters :

byte processing character processing

S S
S

I
DD

S

O
S

S

I
DD

S

O
S S

S

I
DD

S

O
S

S

I
DD

S

O

cursor right (!) pressed once cursor right (!) pressed once

S S
S

I
DD

S

O
S

S

I
DD

S

O
S S

S

I
DD

S

O
S

S

I
DD

S

O

In the byte oriented example the cursor moves to the next byte, the SI sequence, and

not to the next character. In the character oriented system the routine which moves

the cursor has to detect the start of a DBCS character by recognizing the SI sequence.

Then the routine has to set the cursor to the �rst byte of the DBCS character.

Similar problems occur if we press the backspace key to delete a character. In the next

example you will see that in the byte oriented version the SI sequence gets lost and

CHAPTER 4. CULTURAL DIFFERENCES 89

leaves us with a garbage string. This string will no longer displayed correct because

the SI sequence is missing and so the system is not able to recognize the start of the

DBCS characters. Depending on the implementation the system will try to display

the bytes of the DBCS character as SBCS characters (e.g., as Katakana or ASCII

character depending on the code).

byte processing character processing

S S
S

I
DD

S

O
S

S

I
DD

S

O
S S

S

I
DD

S

O
S

S

I
DD

S

O

Backspace (() pressed once Backspace (() pressed once

S S DD
S

O
S

S

I
DD

S

O
S

S

I
DD

S

O
S

S

I
DD

S

O

The same type of problem will occur if you truncate (e.g., the third character),

exchange a character or insert a character (or string) in the mixed string.

Truncation after the third character

byte processing character processing

S S
S

I
k. . . S S

S

I
DD

S

O
k. . .

Exchange of a SBCS character at the third position

byte processing character processing

S S S DD
S

O
S

S

I
DD

S

O
S S S S

S

I
DD

S

O

Exchange of DBCS character at the fourth position

byte processing character processing

S S
S

I

S

I
DD S

O

S

I
DD

S

O
S S

S

I
DD DD DD

S

O

Insertion of a SBCS character at the third position

byte processing character processing

S S S DD
S

O
S

S

I
DD

S

O
S S S S

S

I
DD

S

O

Insertion of a DBCS character at the second positon

CHAPTER 4. CULTURAL DIFFERENCES 90

byte processing character processing

S
S

I
DD S

O

S

O
S

S

I
DD

S

O
S

S

I
DD DD

S

O
S

S

I
DD

S

O

As you may recognize the routines have to take care not only of the DBCS characters

but also of the SI/SO sequence.

This breed of problem will also a�ect wrapping a string, searching a character in a

string, upper and lower casing or working with windows on a screen. In the case of an

environment which works with SI/SO sequences the handling of mixed strings is more

complicated than in a system which works without SI/SO sequences. Nevertheless it

is necessary to be aware of the mixed string problems in a, e.g., Shift-JIS environment.

Handling of mixed strings without SI/SO sequences

Again I will start with the cursor movement. In picture A in �gure 4.19 on page 93 (all

examples [24]) you will see the cursor movement in a byte oriented environment. All

characters in the picture are DBCS characters. There is no SI/SO sequence required

because the MSB of this type of DBCS characters is always set to one. If we now

press to cursor right key the cursor will move one byte to the right. From the �rst

byte of a DBCS character (in line 1) to the second byte of the DBCS character (in

line 2) and so on. In picture B (in �gure 4.19) you will see how the cursor will move if

the system works character oriented instead of byte oriented. The cursor jumps from

one character to the next DBCS character. If we had a mixed string the system could

distinguish between SBCS and DBCS characters by looking at the MSB. If the MSB

is zero the pointer for the cursor position has to be moved one byte. If the MSB is

one the system has to process a DBCS character and has to move the pointer for the

cursor position two bytes instead of one byte.

As mentioned above you have to check which type of character you will process, e.g.,

if you press the backspace key. If have a DBCS character string and the system works

in byte oriented mode the press of the backspace key will delete just one byte of

the string. This will leave us with a corrupted string (see picture A in �gure 4.20

on page 94). As you see some of the characters will change because the byte pairs

where change through the byte oriented backspace operation. On the opposite this

will not happen if you use a character oriented operation. In this case the system

would correctly delete one DBCS character, i.e., one byte pair.

CHAPTER 4. CULTURAL DIFFERENCES 91

On page 95 in �gure 4.21 you will see in picture A the byte oriented replace operation.

After typing the (SBCS) character " H " the system will replace just one byte and

so the mixed string will be corrupted. The Kanji character CBDCHex (Hon or Moto)

will partly be replaced by the " H " (48Hex). The character " D " (44Hex) will form

with the second byte from the DBCS character a new (illegal) DBCS character. If

the system works in the character oriented mode the replace operation will replace

the Hon (or Moto) Kanji character with either one byte and deletes the second byte

of the DBCS character or it replaces the �rst byte with the code for " H " (48Hex)

and the second byte of the DBCS with the SBCS code for space (20Hex).

The handling of mixed character string's e�ects all string handling operations of a

computer system. For example if we use the operations for upper or lower casing

the system has to distinguish between byte processing and character processing. In

picture A in �gure 4.22 (page 96) you will see the upper casing (No. 1) and lower

casing (No. 2) operation performed in the byte oriented mode. This will corrupt

the string. If we use the character oriented operations the string will be processed

correctly (see picture B, No.1 & 2 in �gure 4.22). A group of similar problems are the

string wrapping and substring operations. On page 97 in �gure 4.23 you will see what

happens when the system has to perform a line-wrap (e.g., at the end of a line). If the

space which is left at the line is 18 bytes and the string is longer then this space (here

21 bytes) the system has to wrap the line and put some of the characters in the next

line. Is this operation performed byte oriented the system would wrap incorrectly and

would split a DBCS character (picture A in �gure 4.23). This would cause that the

�rst character in the next line is incorrect. If the system works character oriented it

would use only 17 of the 18 bytes and would split the string correct (picture B in

�gure 4.23). The same problem appears if we try to move a longer string into a shorter

string data �eld. In the example in �gure 4.24 on page 98 the original string is 21

Bytes long. If a byte oriented routine moves this string into a 10 byte long data �eld

the system would cut the string after 10 bytes and would leave us with a corrupted

DBCS character (picture A). The character oriented operation instead would copy

only 9 byte because the next character after the C is a DBCS character which would

not �t in the remaining space.

As last example for the splitting of DBCS characters I will show you a windowing

operation performed in byte oriented and character oriented mode. In picture A on

CHAPTER 4. CULTURAL DIFFERENCES 92

page 99 (�gure 4.25) you will see that the DBCS character is " split ". In a GUI this

would not cause any problems but if you work with a character oriented program

(in text mode) you have to be careful where you place the border of your window.

You can not split SBCS character (because they are only one byte long and placing

a border above it will always hit the whole character) but if you place the border of

a window on the second byte of a DBCS character this character will be corrupted.

To perform the windowing operation correctly in a DBCS environment you (or your

program) have to watch where it places the border of a window (see picture B in

�gure 4.25).

Another function which could give us funny results is the search string function. If you

perform a byte oriented search operation on the source string in �gure 4.26 (page 100)

with the parameter C7A5Hex the function will return 2 positions in the source string

(picture A). One of this positions is the second byte of the third DBCS character and

the �rst byte of the fourth DBCS character. The correct result is that only the last

DBCS character matches the search string (picture B).

If you use DBCS characters with or without SI/SO sequence you always have to be

aware of the arising problems in handling these characters. If you use the byte oriented

operations of an English or American system you will get some strange results. Only

if you use the correct processing method (character oriented) your system will give

you the results which you expect.

CHAPTER 4. CULTURAL DIFFERENCES 101

4.3 Number & Currency convention

In the Japanese business world many computer programs rely on numbers, monetary

values and the proper handling of this kind of information are very important.

4.3.1 Number representation

The presentation of numbers varies only in the in the use of di�erent separators for a

group of three digits. Table 4.4 (on page 101, [1]) shows you an example of di�erent

formats for the representation of numbers. As you see in the table there are only

Country Positive Numbers Negative Numbers

Germany 12.345,67 -12.345,67

Australia 12,345.67 -12,345.67

Arabic 123.45,67 123.45,67-

France 12 345,67 -12 345,67

South Africa 12 345.67 (12 345.67)

Japan 12,345.67 -12,345.67

Table 4.4: Number Notations

few variations in the representation of a number. As separators are used the period,

comma and space. The minus is mainly put in front of a negative number.

In addition to the western way of writing numbers the Japanese use their traditional

Kansuji characters (see �gure 4.27 on page 103). In this way of writing the Japanese

use special Kanji characters to express 10 (Ju), 100 (Hyaku), 1,000 (Sen, do not mix

up with Sen, each Sen has a di�erent Kanji character), 10,000 (Man), 100,000,000

(Oku) and 1,000,000,000 (Cho).

For expressing fractions, ordinal numbers and percentage the Japanese use the we-

stern way and their traditional way. A fraction N

M
is written in Japanese with the Bun

No as the fraction stroke (see picture b in �gure 4.28 on page 109). Ordinal numbers

are written with the Bam-me as sign (see picture c in �gure 4.28). For expressing

a percentage the Japanese use Wari (1
10
), Bu (1

100
) and Rin (1

1000
). If you want to

CHAPTER 4. CULTURAL DIFFERENCES 102

express 56.7 % you could write it like in picture d in �gure 4.28. All of these numbers

will be written with western style numbers or the traditional Kansuji characters (see

�gure 4.27 on page 103).

4.3.2 Rounding of Numbers

For business purposes the Japanese use the normal way of rounding numbers, i.e.,

from XXX.0 to XXX.4 the systemmust round to XXX. In the case of that the number

is between XXX.5 and XXX.9 the system has to round to XX(X+1). For example :

123.454 rounds to 123.45 and 123.457 rounds to 123.46 ([1]). In some business areas

it is common to round to the next 1,000 or 10,000 Yen ([11]).

4.3.3 Currency

The Japanese currency is called Yen (or En). One Yen is 100 Sen. Today the Sen is

mainly used in the banking area. Yen is represented as a one byte character (SBCS)

and En is a two byte (DBCS) character. In everyday life the Japanese use only the Yen.

The e�ect is that there are no currency decimal positions used in Japan (One Yen is

the smallest coin and 10,000 Yen the biggest bill). The international representation for

the Japanese Yen is, regarding to ISO 4217 (Codes for the representation of currency

and funds), the JPY (see table D in �gure 4.32 on page 114) symbol. The small

di�erence in the use of Yen and En is that the Yen is placed in front of the amount

and the En is placed behind the amount of money. For an example for the writing of

positive and negative amounts of money see table D in �gure 4.32. The representation

of positive and negative values follows the standard for writing numbers mentioned

above.

For a data �eld which represent a monetary value you should reserve a currency �eld

length among 12 and 15 digits ([1], [11]). In this �eld you have to put the Yen (SBCS)

or En (DBCS) symbol and a comma every three digit.

CHAPTER 4. CULTURAL DIFFERENCES 104

4.4 Date & Time convention

In this section I would like to introduce the reader to the di�erent date and time

formats which are used in Japan. Furthermore I will explain the di�erent calendar

systems that are used in Japan.

4.4.1 Date formats

In this section I would like to introduce the reader to the di�erences in the repre-

sentation of a date. In some cultures (e.g., Taiwan, Thailand, Arab countries, Israel,

Japan) is not only the Gregorian calendar system used. Besides this calendar these

countries use one or more other calendar systems based on their culture or religion

(see, e.g., [1], 5-2).

In Japan there are two types of calendar systems commonly used :

� The Gregorian calendar system The �rst system is our commonly used Grego-

rian calendar system. With 365 days a year, 12 months with 30, 31 or 28 (in

a leap year 29) days. The di�erence between the date convention in, e.g., Ger-

many, is that the Japanese got a di�erent style of writing a date, here you will

see some examples2 for di�erent styles of date representation (see table 4.5).

Country Representation Example

Germany DD . MM . YYYY 10.02.1966

Australia DD / MM / YYYY 26/07/1991

USA MM - DD - YYYY 03-20-1992

Japan YYYY - MM - DD 1992-03-26

Table 4.5: Gergorian Date represantation

The system, which is used in Japan is the year - month - day representation.

This way got the advantage that, if you want to bring something in chronologic

(or reverse chronologic) order, it is very easy to do.

2DD refers to the day, MM to the month and YYYY refers to the year

CHAPTER 4. CULTURAL DIFFERENCES 105

� Gengou calendar system (see picture a in �gure 4.29 on page 111

The second heavily used system (e.g., from the Japanese government, the most

governmental forms expect this date format) is based on the reign of the Japa-

nese tenno (emperor). After the death of the emperor a commission decides the

name for the next era. Then this new era starts from the year one. Shouwa was

the name of the last era, which ended 1989, in the 64th year of this era, with

the death of emperor Hirohito. So that today, in the year 1992, is the 4th year

of the actual tennos reign. His name is Akihito and the actual era is called the

Heisei era. (Historic note : in this date format the Japanese use the terms Sei-

reki and Kigenzen for dates before the Meiji era, see �gure 4.28 on page 109).

This Gengou (sometimes also called Nengou) type of calendar system gives the

computer systems and software some problems on the way :

{ The system should " know " if the is a coronation of a new emperor, so

that the name of the era could be changed. Also the counter for the year

has to be set to one. An operator has to enter this information when a

change of the emperor occurs. Also the system should provide a function

to transfer from the Gregorian calendar system to the Gengou calendar

system and reverse.

{ The printed or displayed presentation of the Gengou calender system is

possible in several ways :

� A short, modern form is EY - MM - DD, like 4 - 4 - 17, which is

e.g., the 4th year of the era, April, the 17th. EY represents the year

of emperors reign, the era year. This form is the easy everyday used

form for, e.g., tickets, advertising. Besides that form there is a slightly

di�erent form used. (see picture b-1 in �gure 4.29 on page 111) In front

of the EY (emperor's year) is printed (or displayed) the �rst letter of

the era name, like H 4 - 4 - 17. So that it is easier to see which era is

meant. In the �rst example it does not have to be a date in the Heisei

era, it also could be a date in, e.g., the Meiji era.

� An other, often used form, is the EY KY MM KM DD KD form as

date representation. With the era year and the Kanji Nen (KY, year),

then the month and the Kanji Tsuki (KM, month) and at last the day

with the Kanji Hi (KD, day). This date representation would look for

CHAPTER 4. CULTURAL DIFFERENCES 106

the 16th of April, 4th year of the era, like in picture b-2 in �gure 4.29

on page 111.

Sometimes, e.g., cash registers use a similar form. Instead of the EY

(emperor year) you will see the Gregorian calendar system year. This

mixed form is sometimes used, because you do not have to change the

sign for the era. It still uses the Kanji characters for year, month and

day.

� The third form is an extended version of the second form. For this

form the system has to add the name of the era in Kanji characters

in front of the second form. In the year 4 of the Heisei era (1992) , at

April the 16th, this form would look like in picture c in �gure 4.29 on

page 111.

� Besides this two advanced ways it is possible to use the Kansuji for

the month (see �gure 4.27 on page 103 or the Kanji characters for the

Japanese name of the month. You will �nd a table with this represen-

tation of the months in �gure 4.30 on page 112). Today this form of

date representation is a little bit unfashionable, but it could be used

under some circumstances (see picture d in �gure 4.29 on page 111).

Nevertheless it is possible to write the whole date in Japanese Kanji

characters (see picture e in �gure 4.29 on page 111) in this case you

could use the kansuji (see �gure 4.27 on page 103) or the traditional

Japanese name of the day (see �gure 4.31 on page 113).

{ Except for the �rst forms your system has to be able to display or print

Kanji characters, if you want to use the advanced forms of date represen-

tation in the Gengou calendar system.

Besides the era year and the additional Kanji characters does this calendar version

work like the Gregorian calendar system (12 months, a 30, 31 or 28 (29 in a leap year)

days, see [1], 5-4). . In table 4.6 I will give a short overview about the last emperor

eras in Japan.

The Kanjis for these eras would look like picture a in �gure 4.28 on page 109.

Following the JIS standard JIS X0301-1977 (replaced this year with JIS X0301-1992)

the JSA recommends three di�erent time formats (see [29]) :

CHAPTER 4. CULTURAL DIFFERENCES 107

1. For EDI purposes the format YYMMDD (920326) or YYYYMMDD

(19920326).

2. For the human machine interaction the JSA recommends the form YY-MM-DD

(92-03-26) or YYYY-MM-DD (1992-03-26). A second recommended speci�ca-

tion is the YY MM DD or YYYY MM DD form.

3. The form, which corresponds to the Japanese calendar, is YY.MM.DD (4.03.26)

or eraYY.MM.DD (H4.03.26, with H = Heisei, S = Showa, T = Taisho and M

= Meiji)

4.4.2 Time formats

Like the most other countries in the World the Japanese use for business purposes

the 24 hour time system (see [1], 5-5). Again, the di�erence is based on the repre-

sentation of the data. But in this case the di�erence is just a minor di�erence. The

separator, which separates hour, minute, and second is varying. Some countries like

e.g., Argentina, Denmark, Italy, use the period as separator (" . "). In the most other

countries use the colon (" : ") instead. In table 4.7 (page 110) the time that is repre-

sented is 22 hours (10 pm), 42 minutes, 00 seconds and an additional 30 milliseconds,

if the milliseconds appear in the used time format. The separator for "fractions of

a second" should, refering to the ISO (International Standardization Organization)

standards ISO 3307 and ISO 1000, be the same, which is used as decimal separator

in the number representation format, for the country (i.d. [1], 5-5).

The represented forms could be :

� one digit for tenths of a second

� two digits for hundreds of a second

� three digits for thousandths of a second

Besides this, in the business world used time format, there is an other Japanese time

format. This time format contains, like the Gengou date representation, some special

Kanji characters. The characters are called Ji, which is used for the hour, and Fun,

which represents the minutes. So that the time 22:42:00 would look like picture a in

�gure 4.32 on page 114.

CHAPTER 4. CULTURAL DIFFERENCES 108

Moreover that time format the Japanese also know a 12 hour representation. This

twelfth hour format runs actually from 0 to 11. In that case the Kanji Gogo is used as

sign for PM (12:00 { 24:00) and the Kanji Gozen is the sign for AM (00:00 { 12:00).

In this type of time format 22:42 would look like picture b in �gure 4.32 on page 114.

At 10:42 in the morning (AM) it would look like picture c in �gure 4.32 on page 114.

As in the Gengou date representation your system has to be able to display or print

Kanji characters if you want to use this time format.

Following the JIS standard JIS X0302-1977 (combined later this year with the new

JIS X0301-1992) the JSA recommends two di�erent time formats (see [30]) :

1. For EDI purposes the format hhmmss (224200).

2. For the human machine interaction the JSA recommends the form hh:mm:ss

(22:42:00).

In addition to the already introduced date and time formats there are combined date

and time formats recommended by the JSA (see [30]) :

1. For EDI purposes the format YYMMDDhhmmss (920326224200) or

YYYYMMDDhhmmss (19920326224200).

2. For the human machine interaction the JSA recommends the form YY-MM-

DD-hh:mm:ss (92-03-26-22:42:00) or YYYY-MM-DD-hh:mm:ss.The second re-

commendation is the (YY)YY MM DD hh:mm:ss form.

3. The Japanese calendar based form looks like (era)YY.MM.DD,hh:mm:ss

(H4.03.26,22:42:00).

As a last information about the time format in Japan I would like to mention that the

Japanese do not use daylight saving time. There is no need to set the clock forward

or backward in spring and fall.

CHAPTER 4. CULTURAL DIFFERENCES 110

Era From To Duration Tenno

Meiji 1868 1912 45 Mutsuhito

Taisho 1912 1926 15 Yoshihito

Shouwa 1926 1989 64 Hirohito

Heisei 1989 Akihito

Table 4.6: Japanese eras

Argentina 22.42.00

Denmark 22.42.00,03

Italy 22.42.00,030

Belgium 22:42:00,030

Greece 22:42:00.030

Japan 22:42:00

Table 4.7: Time formats

CHAPTER 4. CULTURAL DIFFERENCES 115

4.5 Kana & Kanji Input

It is understandable that the Japanese can not build keyboards with thousands of

keys to enter their Kana and Kanji characters (old typewriters where build in a

similar way, see �gure 4.34 on page 121). For this reason they use di�erent methods

to enter these characters. Usually the input is handled by a program know as FEP

(Front End Processor). This program accepts the user input and handles the necessary

conversions to the appropriate codes. In the following sections I will describe some of

these methods and the historic development to the status quo today.

4.5.1 Front End Processor

Nowadays there are di�erent ways to enter Kana and Kanji symbols. In this section

I would like to introduce the reader to some possible ways.

Today there are two common used ways :

� Romaji) Hiragana) Kanji

� Hiragana) Kanji

Both ways are available in di�erent implementation (e.g., IBM, Ricoh, NeXT, Hita-

chi, . . .), but the basic principal behind the function is always the same. The main

di�erence between the di�erent methods is that some companies (or their FEP) use

a separate window or line on the screen to display the Kana or Kanji before the user

accepts the presented character. After the user has accepted the o�ered choice, the

characters will be transferred to their place in the application and displayed at the

last cursor position.

The other widely used method is to display the input direct on the screen (at the

actual cursor position) in the application. So that the user will see his input appearing

exactly at the place where he wants to enter the characters (inline conversion).

Kana to Kanji Conversion

The �rst way of conversion (via Romaji) is just a step before the Hiragana to Kanji

conversion. For the most people this way is easier to use because they are more familiar

CHAPTER 4. CULTURAL DIFFERENCES 116

with the normal standard " QWERTY " computer keyboard then with the Hiragana

computer keyboard (see �gure 4.35 on page 122, [28]). Hiragana (and Katakana,

both are called Kana characters) is a syllable alphabet, so that it is possible to

enter the syllables in Romaji (our alphabet), i.e., the Latin alphabet (a table with

Romaji and the corresponding Katakana and Hiragana syllable is starting at page

127). After typing the syllables in Romaji the FEP converts the input and displays

the appropriate Kana character. To enter the name of the city " Tokyo " by using

the �rst way, we have to type " toukyou " (which is the correct spelling for Tokyo

in Japanese). If we type this on a " QWERTY " computer keyboard and the FEP

is switched to the Romaji to Hiragana conversion mode, on the screen would appear

the spelling for " Tokyo " in Hiragana (see �gure 4.32, page 114, picture e).

Depending on the FEP conversion routine we could now take over the Hiragana

characters by pressing a certain key (e.g., space, enter) or we could press the key

which would start the conversion to Kanji characters.

Tokyo (or toukyou) converted to Kanji causes no problems, because there is only one

Kanji which represents this spelling. After pressing the conversion key, on the screen

would appear the Kanji characters for " Tokyo " (see �gure 4.32, page 114, picture e

).

In the other case, if there are di�erent Kanji characters for a certain spelling than we

have to choose the right one. There are di�erent ways to do this :

� by pressing the Kanji conversion key again and again until the right Kanji will

appear, or

� requesting a table with all, for this spelling, appropriated Kanji characters from

the system and then choosing the right one

To make it easier for the user, the most hardware vendors have developed a special

set of keys which are added to a normal keyboard. A user is now able to select the

FEP mode by pressing one key or a combination of shift, control or alt(ernate) and a

special key to switch between the FEP modes. To give you an example you will �nd

in �gure 4.37 pictures of a Japanese IBM notebook model 55 and the corresponding

German IBM model. If you direct your attention to the space key you will recognize

that the Japanese space key is much smaller then the space key on the German

CHAPTER 4. CULTURAL DIFFERENCES 117

keyboard. Instead of a big space key you will see three keys which are used to switch

between the di�erent modes of the FEP.

One of this keys is the Kanji character conversion key. The other keys are used to

switch between Hiragana, Katakana, ASCII and other input methods (like input by

JIS code).

Let me give you an example for the use of this, if you want to enter the name of the

Meiji era you have to type " meiji ". On the screen would appear the spelling of "

meiji " in Hiragana (see �gure 4.32, page 114, picture f).

If you press now the Kanji conversion key the system would o�er the most common

(or often used) Kanji characters for this spelling (see �gure 4.32, page 114, picture f).

This could be (or is) the right Kanji character for that case, but in some cases you

need an other Kanji which also represents the spelling, but has a di�erent meaning.

These Kanji characters would look like picture a) in �gure 4.38 on page 125 (for the

input " meiji "). Some systems are able to display a table of all appropriate Kanji

characters and the user can select the right one by pointing with a mouse cursor or

high-lightening the Kanji character under cursor control.

The other possible way of entering the syllables " to u kyo u " for " Tokyo " is to

type them direct on the Hiragana keyboard (see �gure 4.35, page 122). But today

the most people prefer the " QWERTY " type computer keyboard.

Development of FEP

When the Japanese started to develop the FEP method they used a simple architec-

ture. After the user entered the spelling of a Kanji character the FEP is looking in

a Kanji database for the Kanji which �ts this spelling. After the user has selected

and accepted the o�ered Kanji characters the code of this Kanji character is passed

through to the application.

The �rst versions of FEPs where only able to convert one Kanji character at a time.

In order to get the Kanji characters for " Tokyo " the user had to type " tou " and

convert this to the Kanji character for east. After that he had to enter " kyou "

and convert this to the Kanji character for capital city (see picture a, �gure 4.36,

page 123). This, Tan (single) Kanji conversion called, way of entering characters was

slow and not very sophisticated. The next step was that the FEP system was able

CHAPTER 4. CULTURAL DIFFERENCES 118

to understand the spelling of compound Kanji characters (like " Tokyo " which is

a combination of the two Kanji characters for east and capital city). The Jukugo

(Kanji compound) conversion enabled the user to enter " toukyou " and to convert

this to the appropriate Kanji characters (see picture b, �gure 4.36, page 123). The

next improvement of the FEP was the Renbunsetsu (phrase) conversion which allows

the user to enter whole phrases (or sentences) and convert them at once. This way of

converting Kanji and Kana characters is quit di�cult because the Japanese use not

only Kanji characters in a sentence. For example, Hiragana is used for grammatical

constructs and Katakana or Romaji is used for foreign words.The Renbunsetsu FEP

must be able to judge which Hiragana characters have to be converted and which

not. Furthermore, if there are several Kanji characters for a spelling, the system

has to give the user a choice of Kanji characters (see picture c, �gure 4.36, page 123)

depending on the context of the sentence. This is quite more complicated and needs an

intelligent conversion algorithm, much more intelligent then the conversion algorithm

for compound Kanji character conversion. Today it is possible for an application to

overtake control in which mode the FEP is. The FEP could be switched to ASCII

mode if the application (or the programmer) wants that the user could enter only

ASCII characters (e.g., for �lenames). Likewise it can allow to user to choose which

type of characters he wants to enter.

Structure of FEPs

The basic structure behind all FEPs is similar. Some are a part of the keyboard

driver, some work as a daemon in the background of a system. But all work in a

similar way (for the basic structure see �gure 4.33, page 118).

Keyboard

JIM

Application

Kana) Kanji

conversion

'
&

$
%

Kanji

dictionary
6

-
-��

6

Figure 4.33: Japanese Input Manager

CHAPTER 4. CULTURAL DIFFERENCES 119

In order to do their job, converting a user input to Kanji character(s), the FEP needs

a Kanji dictionary. In this dictionary is the pronunciation (Yomi in Japanese) for the

Kanji characters listed. Depending on the mode the Japanese Input Manager (JIM)

passes the user input through to the application or converts the input to Hiragana,

Katagana or (via the Kana characters) to Kanji characters. Let us now have a closer

look on the conversion from Romaji or Hiragana to Kanji. The normal way is that

the system, after you entered the Romaji or Hiragana pronunciation, has a look into

the Kanji character database to �nd an appropriate Kanji (or a link to the right

code number of a Kanji or the Kanji characters which �t the spelling). After that the

system o�ers you the Kanji character(s) and waits for a decision of the user.

The NeXT computer, which was japanized by Canon, uses a " Kana Kanji Conversion

Server " which runs as a separate process in the background. The JIM from NeXT

computer (Canon) got several di�erent modes :

� Romaji (ASCII) input

� Hiragana input (via Romaji or Hiragana keyboard)

� Katakana input

� Conversion to Kanji characters

If the JIM is switched to the " normal " ASCII input mode it works like a ASCII

Keyboard, i.e., it is passing the input through to the application.

If the mode is switched to the Hiragana mode the JIM will try to interpret all key-

strokes as Hiragana. First the entered character is displayed in Romaji. If a single

character represents a Hiragana syllable (like a, i, e, o ,u) it will be displayed on

the spot as Hiragana. If there are several choices (like sa, se, si, so, su) the JIM will

display the �rst Romanji and wait until it is possible to decided which Hiragana it

meant (see �gure 4.40, page 127). Then the appropriate Hiragana will be displayed

(instead of the Romaji characters, see picture a, �gure 4.39, page 126). In the Ka-

takana mode the system will do excatly the same, only that now Katakana is selected

and displayed (see picture b, �gure 4.39, page 126). If the computer is connected to

a Hiragana keyboard the minor di�erence is that now there is only one key to press,

which represents a Hiragana character.

CHAPTER 4. CULTURAL DIFFERENCES 120

This mode of conversion has the advantage that a user could easily enter the Yomi of

a Kanji. Then let this input convert to the appropriate Kanji characters by the con-

version routine. However, as you maybe have recognized, you have to know the correct

Yomi of the Kanji which you have in mind (like " Tokyo " is spelled " Toukyou " in

Japanese). This leaves us with the problem that the Japanese know and use di�erent

systems for transliterating their Yomi to Romaji. As an example you will �nd a table

with the Hepburn and Nippon-siki (Japanese system) starting from page 69.

Entering Katakana

The other Japanese syllable alphabet, Katakana, which is mainly used to describe

foreign words or terms is entered in the same way as Hiragana. After switching to

the Romaji to Katakana conversion mode it is possible to type in the syllable on the

computer keyboard (see picture b, �gure 4.39, page 126 or picture d in �gure 4.38 on

page 125).

Katakana characters are usually used to write foreign word (like names) or so called

Gairaigo (loan-word from other languages). A foreign name like Schilke (spelled as

Shi3 ru4 ke) would look like picture e, �gure 4.38 on page 125.

The spelling in Katakana depends on the pronunciation of the foreign word. Following

the pronunciation, the word will be represented in the " best �tting " spelling, which

is possible with the Katakana syllables. Sometimes foreign words become a di�erent

spelling and pronunciation compared with the original spelling and pronunciation,

e.g., the word " software " will become " sofutouea " which looks in Katakana like

picture f, �gure 4.38 on page 125.

Besides these methods some systems also o�er a way to enter a number code which

represents the appropriate Kana or Kanji character. For the code number is the code

of the character,e.g., in the system internal code, the standard JIS Ku-ten code, the

JIS code or the IBM PC code (see �gure 4.42 at page 129). This is only a short list,

depending on the system there will be some other codes available (like Shift-JIS, . . .).

3sounds like the SCHIlke in my name

4There is no L available in the Kana syllable alphabet, so that the Japanese us RU instead of L

CHAPTER 4. CULTURAL DIFFERENCES 130

4.6 Minor Cultural Di�erences

The highest stage of Japanization is to support all the smaller cultural di�erences.

On the next couple of pages you will �nd some of the Japanese minor di�erences. It

is not very important to support all of this, but the support of cultural depending

things could make the point which let a Japanese customer chose a foreign software

product.

4.6.1 Writing Style Specialities

The Japanese can use di�erent writing directions (see �gure 4.43). A common used

style of writing is the Western writing style. Additional to this writing style there

are some other writing styles used. The most common way of writing in Japan is

still the vertical writing direction but also Western style writing is quite often used.

Vertical and right-to-left writing is not a high demand for japanized versions of foreign

software. Nowadays the Japanese get used to the Western style of writing. Right-to-

left writing was used in ancient times (until WW2) and today there is not really a

demand for this writing style. It would be a nice feature, but it is usual not needed.

The Japanese vertical style which writes from the left to the right is also very rarely

used today.

Today the Japanese vertical writing style (from the right to the left) is mainly used for

books and magazines (see �gure 4.43). Only if you plan to sell a desktop publishing

program you have to consider to enable your program for vertical writing. Besides

the vertical writing the Japanese style of writing has some other di�erences to the

Western style of writing. The page order is an other di�erence to Western styled

books or publications (see 4.44, 4.45, 4.46). So that Japanese open their books at

the, for Westerners, wrong end. They read it from the back cover to the front cover.

This also causes that the page numbering is, for Westerners, in reverse order. To show

you an example you will see in �gure 4.47 on page 147 a Japanese poem in Western

style writing (picture A) and in picture B the same poem in Japanese writing style.

The Japanese writing style implicate some other Japanese specialities, like Keisen,

Kinsoku Shori, Kansuji, Hankaku and Zenkaku Characters, Rubi (top and bottom

rubi, e.g., also called furigana), Amikake, Kinto-waritsuke, Japanese Punctuation,

small Kanas, the Japanese format for addresses and telephone numbers. In addition

CHAPTER 4. CULTURAL DIFFERENCES 131

-

-

-

?

A) B) C)

??

�

?

?

?

?

?

?

?

�

Figure 4.43: Japanese Writing Directions :

A) Western writing style (from left to the right, from top of the page to the end of

the page)

B) Japanese vertical writing style (from the top of the page to their bottom, from

the right side of the page to the left side)

C) Like B) with paragraphs

�

A)

-

B)

Figure 4.44: Japanese Page Order:

A) Western page order, the publication is opened from the right side

B) Japanese page order, the publication is opened from the left side

CHAPTER 4. CULTURAL DIFFERENCES 132

A) B)

2 3 3 2

' $ ' $
? ?

Figure 4.45: Japanese Page Order:

A) Western page order, the publication is leafed through by turning over the right

page

B) Japanese page order, the publication is leafed through by turning over the left

page

1

3

5
A)

2

4

6

B)

Figure 4.46: Japanese Page Order:

A) Western page order, the pages are sorted 1,2,3,4,5,6,. . .

B) Japanese page order, the pages are sorted (for us in reverse order) . . . ,6,5,4,3,2,1

CHAPTER 4. CULTURAL DIFFERENCES 133

there is a di�erence in the use (or understanding) of symbols for yes & no.

Keisen

Keisen are used for creating tables, lists or reports. Keisen are, literally translated,

lines, boxes or borders. Vertical lines are called Tatesen and horizontal lines are called

Yokosen. Keisen are not a requirement for all programs. When your program produces

output of data in form of tables, lists or reports it will be considered as necessary to

provide Keisen.

Kinsoku Shori

Kinsoku Shori is similar to the word wrap in Western word processors. It adjusts

text that speci�c characters do not appear at the start (comma, Japanese period

or symbols, see picture C in �gure 4.48, page 148) or at the end of a line (open

parentheses and quotation marks, see picture C in �gure 4.49, page 149). This is

called line head Kinsoku processing (see pictures A & B in �gure 4.48) and line end

Kinsoku processing (see pictures A & B in �gure 4.49). Usually these characters are

moved to the previous or next line.

Kansuji

Kansuji is the traditional Japanese way of writing numbers. Besides the (adapted)

way of writing numbers in Western style (like 1, 12, 123, 1234, . . .) the Japanese use

their traditional way of writing numbers. Especially when the numbers or numbers

and text are written vertical Kansuji is used. In addition to " normal " numbers

the Japanese use special Kansuji to indicate the numbers 10, 100, 1,000, 10,000,

100,000,000 and 1,000,000,000. On page 103 in �gure 4.27 you will see the Kansuji

and an example of their use. The only di�erence between writing numbers in Kansuji

and Kanji is that the numbers 0, 1, 2, 3 have a di�erent Kanji.

Hankaku and Zenkaku Characters

The terms Hankaku and Zenkaku refer to the width of characters. For example Ka-

takana is not always displayed in Zenkaku, which is the doubled width of normal

CHAPTER 4. CULTURAL DIFFERENCES 134

ASCII characters. If Katakana is displayed in Hankaku it needs the same space on

the display as a standard ASCII character needs. For example on an AX{PC the size

of a Hankaku character is 8 � 19 dots and the Zenkaku characters is 16 � 19 (in a

24 � 24 matrix) dots in size. Only ASCII and Katakana are displayed in Hankaku.

Depending on the code set it is represented by one or two bytes.

Rubi

Rubi is another Japanese specialty. Rubi's (sometimes called furigana) are used to

write the pronunciation (Yomi) of a rarely used Kanji on top (top Rubi, see picture

A in �gure 4.50 on page 150) or underneath (bottom rubi, see picture B in �gure

4.50) this Kanji. They have usually the half size of Zenkaku characters .

Amikake

Amikake is used like boldface, capitalizing or underlining text. It is somewhat like

gray screening of text or characters (see picture C in �gure 4.50 on page 150).

Small Kanas

Small Kana characters are used to distinguish between di�erent Yomi's of Kana

characters. The character looks like a normal Kana, it is just smaller. Added to a

normal Kana character it changes the Yomi of this character, e.g., Do becomes Dyo

by adding a small Kana character (see picture D in �gure 4.50 on page 150).

The other special Kana characters are called Dakuon, Yo'on, Sokuon and Handa-

kuon. These are Kana characters which express di�erent pronunciations of the stan-

dard Kana character. Dakuon are distinguished from normal Kanas by the Japanese

version of the ". These characters are called "voiced sounds" (see �gure 4.51 on page

151). Yo'on is a, so called, "contracted sound" and is also expressed by small Kana

characters (see picture A in �gure 4.52 on page 152). Sokuon is actually only one

character (tsu) which is a small character and stands for a "double consonant (or

assimilated) sound" (see picture B in �gure 4.52). The last group of special Kana

characters is the Handakuon group. This group has the Japanese � as sign. All Han-

dakuon start with " P " (see picture C in �gure 4.52) and therefor they are called

P-sounds.

CHAPTER 4. CULTURAL DIFFERENCES 135

Kinto-waritsuke

Kinto-waritsuke is a special way of formatting Japanese characters or sentences bet-

ween two points. It is used to stretch text between, e.g., the beginning of a line and

the end of a line (see pictures A & B in �gure 4.53 on page 153).

Japanese Punctuation

The Japanese use several types of punctuation which are not common or unknown in

the Western world. Some of them just look di�erent from their Western counterpart.

There are several di�erent types (see picture C in �gure 4.53, page 153) :

� the Japanese period

� the Japanese comma

� the Japanese separator

� the Japanese repeat symbol

� other punctuations like Japanese parentheses, brackets, . . .

Besides the separator and the repeat symbol they are used like Western cultures

would use this punctuation. The main di�erence is the special shape.

The separator is used to make it easier to understand compounds of Kanji's so that

it is easier to understand the meaning of a certain Kanji group. The repeat symbol

indicates that the previous Kanji has to be repeated.

Address Format

The Japanese address format is totally di�erent from the address formats used in the

Western societies. The way of writing an address in America would look like this :

Addressee's Name

Number Street

City State (or State abbreviation) Zip Code

CHAPTER 4. CULTURAL DIFFERENCES 136

An address on a German letter would look like this :

Addressee's Name

Street Number

W- (or O- for the former East German area) Zip Code City

The Japanese use a reverse order compared to this two Western styles :

Postal Symbol Zip Code

City (Town or Village)

District Number

Addressee's Name

If your program prints anything with an address on it (invoices, letters, . . .) you have

to enable your program to cope with this style of Japanese Address.

Telephone Numbers

Phone numbers are, like the date, written in various formats. In addition to the

western way of writing phone number (grouped in 3 digit or 4 digit groups) like :

� (03) 3479-2893

� 03-3479-2893

there is a way of writing the number in vertical writing as you will see in �gure 4.54

on page 154. As well as the use of Kansuji it is also common to write a phone number

vertical with western numbers.

Yes / No

An interesting di�erence between Western culture and Japanese culture is the way

of expressing Yes and No. For a person with a Western background an X usually

represents Yes and a circle () represents NO. In Japan these symbols will be

CHAPTER 4. CULTURAL DIFFERENCES 137

Product CGA Hercules VGA

Chicago Software X

Dallas Software X X

Table 4.8: Demo Table for Japanese Yes / No

interpreted in the opposite way. In a Japanese Table represent Yes and the X

represents NO. As an example let us have a look at table 4.8. An European or

American reader would interpret this table in the way that Chicago Software supports

only VGA and Dallas Software supports VGA and Hercules. A Japanese reader,

instead, would assume that Chicago Software supports CGA and Hercules and Dallas

Software only CGA.

In addition the way of answering is also di�erent. If the system asks you " Don't you

want to delete this �le ? Yes / No " a Japanese user would answer " YES, I don't

want to delete it " ([11])

4.6.2 Other Di�erences

Further to the di�erences mentioned above there a plenty of other di�erences in the

Japanese (language & cultural) computer environment. I can not list all of them but

I will give you some other di�erences which could apply in a software product.

For example : if you want to adapt a CAD program for the Japanese market or if

your program just has to make some paper output you should know which units and

which paper size is used in Japan. Sometimes it is useful to know which di�erences

between foreign and Japanese hardware exists. Or think about the problem how to

sort Japanese data. Even if you do not need to sort Japanese data you need at least

a data-type to store the data.

Units

The Japanese use, unlike the English or American, mainly the metric system ([4]). To

express a length they use meter as a base unit (also depending forms like millimeter,

CHAPTER 4. CULTURAL DIFFERENCES 138

centimeter, kilometer, etc.) and the cubic or square form of the base unit for area

and volume (see tables a, b & c in �gure 4.55 on page 155).

Another form to express a volume is the base unit liter. For the measurement of weight

the base unit gramme is used. The base unit for time is the second. To represent a

time hour, minute and second are used (see tables a & b in �gure 4.56 on page 156).

For temperature the Celsius scale is used ([4]).

Maybe you have recognized the " mainly " above. This implies that the Japanese use

not only the units from the metric system. In addition to metric system the Japanese

use some of their traditional units for measurement purposes. You will �nd them in

the �gures 4.55 and 4.56. For example real estate agents often use the traditional

measures for area to describe the size of an apartment or room (e.g., Tsubo).

Paper size

Similar to the unit system, the Japanese use the same paper sizes as, e.g., Australia,

Germany, etc. In table 4.9 you will �nd the sizes of the standard which is used in

Japan. This standard corresponds, e.g., to the German DIN 66008. Additionally you

will �nd some of the American paper sizes (letter and Legal).

The most common used paper sizes in Japan are A4, B4, B5 and A3. For normal

business communication A4 is mainly used. Some governmental forms are printed on

B sizes.

4.6.3 Hardware

Regarding the fact that a Japanese computer user has several special requirements

it is naturally that there are some di�erences in the hardware. The major di�erences

are caused by the fact that the Japanese use Kanji characters. This causes certain

requirements, like :

� Kanji ROMs for the Kanji fonts & character set (nowadays sometimes realized

as softROMs)

� high resolution for the output on screen and/or printer usually a Kanji character

is coded in a 24�24 matrix (this was the main reason for the development of

the 24 (!) wire printer and laser printers).

CHAPTER 4. CULTURAL DIFFERENCES 139

Size JIS (DIN) A y JIS (DIN) B y JIS (DIN) C y

0 841 � 1189 1000 � 1414 917 � 1297

1 594 � 1189 707 � 1414 648 � 917

2 420 � 594 500 � 707 548 � 648

3 297 � 420 353 � 500 324 � 458

4 210 � 297 250 � 353 229 � 324

5 148 � 210 176 � 250 162 � 229

US Letter 215 � 279 y

US Legal 215 � 355 y

Table 4.9: Standard Paper Sizes used in Japan

y= in mm

Source : [1], 7-1

� a keyboard which supports Kanji character input with special conversion keys

(not really necessary, but more convenient for the user)

� support of the JIS Kanji character set standard, e.g., the most printers work

with this standard (as control language the Japanese version of the Epson

ESC/P printer control language is widely used)

� in the Japanese PC world exists a di�erent disk format in addition to the IBM

PC standard formats. This format is 1.2 MB on a 3.5 inch oppy disk (Disk-

drives which supports this format must be able to change the speed of the

disk-spin).

� the size of a computer system is more important in Japan than it is in Europe

or the USA. As mentioned before, the o�ce (and private) space in Japan is

limited. This creates a demand for small, but powerful, computer systems (for

a picture of a compact o�ce computer system see �gure 4.57 on page 157).

These are only the obvious di�erences, but it gives you a fair impression about it. In

the workstation world the di�erences are not so big and mostly solved by the use of

software (like softROMs, softfonts, . . .)

CHAPTER 4. CULTURAL DIFFERENCES 140

Let me use as an example the, so called standard in the western computer environ-

ment, the IBM PC (or compatible). Compared with the NEC PC98XX series, the

market leader in Japan, you will spot some signi�cant di�erences ([22]). Both ma-

chines run under the operating system MS-DOS (or PC-DOS). A " clean "5 DOS

program which uses only DOS calls will probably run and also " clean " Windows

programs are usually compatible.

If a program relies on PC BIOS6 calls the it will not run on a NEC PC. In addition

the DOS of the IBM PC is a standard ASCII (IBMSCII) OS which supports only

some European character extensions. The NEC PC instead runs a full Kanji version

(using Shift JIS) of MS-DOS.

The most di�erences are based in the di�erent hardware design of the NEC PC. These

di�erences are :

� Keyboard layout, in order to make it easier for the Japanese user NEC added

some special keys for the use with the FEP, some special application function

keys and renamed some other keys. Another di�erence is that the NEC PC uses

a FEP to handle the Kanji input (compared to the US IBM PC). Starting from

page 157 you will �nd some examples for di�erent Japanese keyboard layouts.

� Floppy disks are compatible in some way. The NEC PC can read the IBM

PC disks in the formats 360KB (5.25"), 1.2MB (5.25") and 720KB (3.5"). In

addition the NEC is able to write IBM PC disks in the 1.2MB and 720KB

formats. It is not possible for the NEC to access the 1.44MB (3.5") formatted

disks or to write on a 360KB oppy disk. The format which is only supported

by Japanese computers is the 1.2MB (3.5") format. The IBM PC is not able to

read or write this Japanese format because the system must be able to switch

the speed of the disk spin.

� The Video memory has a totally di�erent design. Instead of one byte for a cha-

racter the NEC always uses two bytes. Not only the way of storing a character

is di�erent also the display attributes have a di�erent organization then the

IBM PC display attributes.

5using only the speci�ed DOS calls or Windows APIs

6Basic Input Output System

CHAPTER 4. CULTURAL DIFFERENCES 141

� When NEC launched the NEC PC it was a requirement to work with Kanji

characters. To do this they needed a higher resolution then the IBM PC was

o�ering at this time. The NEC PC resolution in normal mode is 640�400 pixel

and the high resolution mode it is 1120�750 pixel. This speci�cation has not

changed in the last ten (!) years.

� The NEC PC Kanji fonts are stored in a ROM chip. Nowadays the IBM PC

stores them in the PC memory.

� The BIOS calls are the main hurdle for foreign software or programmers. In

table 4.10 (on page 141) you will see the main di�erences between the IBM PC

BIOS and the NEC PC BIOS. In addition the BIOS RAM area (which keeps

IBM PC BIOS BIOS Call NEC PC BIOS

09Hex & 16Hex Keyboard 18Hex

10Hex Video 18Hex

13Hex Disk 1BHex

14Hex Serial Communications 19Hex

15Hex System Services various

17Hex Printer 1AHex

Table 4.10: IBM vs. NEC BIOS calls

([22])

the system status, keyboard bu�er, information about the graphics mode) has

a di�erent layout.

These are the main di�erences. On the Japanese market there are many other players

which have their own hardware and software design (like Fujitsu, Toshiba, . . .).

In the workstation environment the di�erences are not so big. The most di�erences

could be handled by software. The main di�erence in the hardware is the Japanese

keyboard.

CHAPTER 4. CULTURAL DIFFERENCES 142

4.6.4 Sorting

It is quite easy to sort data containing alphabetic or numeric data. Even if you have

special characters like German umlauts (e.g., the "a is treated as ae, it is possible to

use a normal alphanumeric sort routine). For the most European or alphabet oriented

countries there is a de�nition for the collating sequence, but now ask yourself : How

would you sort pictures ? In an easy way you could look at a ideographic Kanji

character as a picture. Now you should be able to imagine how di�cult it is to sort

Japanese data. There are several approaches to sort Japanese data, like :

Through the fact that you could compare Hiragana and Katakana with an alphabet (a

syllable alphabet) it would be possible to sort data using the Yomi of the, e.g., name,

instead of the ideographic Kanji characters which represent the name. To do this you

have to store for each data-�eld (in a separate �eld) the pronunciation. The storing of

the Yomi is necessary because a Kanji character has not only one, sometimes several,

Yomi's. The pronunciation also depends on the way of reading the Kanji character.

The most common ways are On-yomi (Chinese) and Kun-yomi (Japanese) reading (or

pronunciation) This makes it much easier to sort Japanese data, but the problems

just have begun. The main problem is that there is no Japanese standard ordering

(or collating sequence) de�ned. This leaves us, again, with the problem how to sort

Japanese data.

To sort data represented in Hiragana characters you have to use a collating sequence

like the 50-On-Sequence (starting a-i-u-e-o (instead of a-i-e-o-u in the western world),

called Gojuuonjun) or the I-RO-HA collating sequence (called after an old Japanese

poem. It starts I-RO-HA and all Hiragana characters appear just once). A table (see

�gure 4.60) with these collating sequences starts from page 160. By using one of these

sort sequences you also have to distinguish between sorting after the actual Yomi,

the On-yomi or Kun-yomi. Furthermore this way of sorting Japanese data, there are

several other ways of doing this. The disadvantage of the method described above is

that you always have to store the Yomi for the sorting process. If you want to avoid

this you have to use one of the other methods of sorting Japanese data.

Other ways of sorting Japanese data are, e.g., sorting after the numbers of strokes

of a Kanji character (this collating sequence is called Sokaku), after the type of the

strokes (called Bushu) or after the JIS code table (which is actually the easiest way

of sorting Japanese data).

CHAPTER 4. CULTURAL DIFFERENCES 143

Sorting after the JIS code table brings the data in the following order ([26], [27]) :

� JIS X0208 level 1 is sorted after the representative On-Kun Yomi of the Kanji

character by using the 50-On sequence. Kanji characters with the same Yomi are

sorted in the order On-yomi, Kun-yomi, order of Radicals (see below), number

of strokes.

� JIS X0208 level 2 is collated in the 214 classes of Radicals (see below). In these

classes the Kanji characters are sorted after the number of strokes. If some

characters have the same number of strokes they are sorted following the 50-On

sequence.

� JIS X0212 (sometimes called JIS level 3) is sorted like JIS X0208 level 2 in the

214 groups of Radicals and within a Radical group after the number of strokes.

In the description of the collating sequence which is used for the JIS character set we

�nd a new term called Radical. A Radical (part-head group) is an ideograph, a base

which is used in combination with other Radicals to form Kanji characters. Usually

a Kanji character is formed by up to four Radicals. On page 162, picture a in �gure

4.62 you will �nd some Kanji characters which are formed with one (No. 1), two

(No. 2), three (No. 3) and four Radicals (No. 4). There are several ways of combining

Radicals to a Kanji character, e.g., 2, 22, 222, 2
2
, 22

2
2, . . . (with 2 representing

a Radical).

So you see that it is not easy to sort Japanese data, but there is a way to do this.

If you do not want to implement your own sort algorithm you could by a package

which does this for you.

4.6.5 Japanese Data-types

In order to enable a programming language (or application) to work with Japanese

characters we have to enable the system to work with DBCS characters. There are

two ways of enabling a programming language or application to cope with DBCS

characters.

1. Using the old data-types and enabling the system to work with DBCS charac-

ters. The Japanese version of Oracle goes this way. If you de�ne a data-�eld of

CHAPTER 4. CULTURAL DIFFERENCES 144

20 character it is a normal SBCS data-�eld which could store up to 20 SBCS

character. By enabling the system to work with DBCS character it is now able

to store up to 10 DBCS characters or a mixed string containing any combi-

nation of SBCS and DBCS characters. In the case of a mixed string the byte

length of the string can not exceed the limit of 20 byte.

2. By de�ning a new data-type for the handling of DBCS character (or mixed)

strings. This is done, e.g., for COBOL (DISPLAY-2), FORTRAN (NCHARAC-

TER) and C (wchar t) ([9]). The problem with the extended data-type is that

the compiler has to be rewritten because all functions handling character data

have to work character oriented instead of byte oriented. The new data-type

a�ects all types of commands, like input/output, assignment, string handling,

sort/merge and comparative operations.

There are two ways of implementing a DBCS data-type. For the example I will use

the widely used programming language C. The ISO 9899:1990 (ISO C) standard ([5])

de�nes the C data-type wchar t. This data-type is a wide character data-type and

stores the character data like 8C8EHex. In addition this standard de�nes routines for

the conversion between multi-byte and wide characters. The second approach is to

store data as a multi-byte character which looks like 8CHex8EHex. In this approach n

single bytes are used to store the information. As a wide character the data is stored

as a group of n-bytes (8C8EHex vs. 8CHex8EHex, [6])

The advantage of a programming environment which can handle DBCS characters is

that the programmer is able to write internationalized programs. The program is able

to run in di�erent national computer environments. The emerging problem is that

the programming environment has to be rewritten that it is able to handle (probably

di�erent) DBCS character sets. In addition the system must o�er di�erent conversion

routines between SBCS and di�erent DBCS (also between multi-byte characters and

wide characters)

4.6.6 Japanization Pitfalls

In this paragraph I will talk about some pitfalls which could cause misunderstanding

if you are not careful enough when you japanize your product.

CHAPTER 4. CULTURAL DIFFERENCES 145

One of the common anecdotes about a japanized product is the story about the beep

in the Japanese version of Lotus 123. As mentioned before o�ce space is rare is Japan.

Many people work in open-plan o�ces. When Lotus launched their �rst version of

Lotus 123J they discovered that they had to remove the error-beep. First of all it

is very shameful for a Japanese when the computer tells everybody " BEEEP, you

made a mistake " and in open-plan o�ces the steady beeping would cause a major

disturbance. As mentioned in the date section the Japanese use a special date format

which contains the era of the emperor. In one of the earlier Lotus 123 versions it

was possible to add the common Gengou date or the reign of the emperor and it was

possible to change the name of the emperor. This was a big mistake because it looked

for the Japanese that one was planning the death of the emperor ([12]).

Two other things, from the thousands of pitfalls, I will mention here are translation

errors and manual design. When the �rst translation of the UNIX operating system

took place there where some wrong translations made when they adapted UNIX to

the Japanese language environment. The development of UNIX mainly took place

in the US academic environment, so many UNIX-related terms have funny names

(for US people) like demons, zombie process and killing a (child) process. In the �rst

translation the message " a child process was killed " was translated to the horrifying

Japanese sentence " we just murder your �rst-born child ".

The Japanese use a lot of adapted English technical denotation but sometimes they

prefer more (for them) visible Japanese terms, e.g., a Kanji which expresses an idea

better or more understandable for Japanese, then the English loan-word. If you let

translate the manual you should always use a Japanese native speaker for the trans-

lation. After the �rst translation is done you should let a second technical translator

do a back translation, to check the translation of the �rst translator ([20]).

This is important because now you can control if the �rst translator gets the point

which you want to express in the manual. Another fact is that the Japanese manuals

have a di�erent style then US or European manuals. In Japan the manual describes a

scenario and tries to explain the user (with examples) how to work with the product.

Besides that small cartoons are very common, like a oppy disk which tries to avoid

the contact with a magnet (see on the cover of the most 51
4
oppy disks).

CHAPTER 4. CULTURAL DIFFERENCES 146

4.6.7 Cultural Di�erences

You have read now a lot about Japanese cultural di�erences. Not all of them have to

apply for an adapted program. Nevertheless always some of them apply. If you do the

japanization for your program you have to think about which of these di�erences you

have to adapt and which not. You cold start by adapting the, for your users, more

important features and later on you adapt more and more of the cultural di�erences.

If you think you do not have adapt even some of the minor di�erences you will

recognize that your software will not sell well (except you have a market-niche). It is

like that you are o�ering a word-processor in Germany which is not able to handle

the German umlauts. It will not be a good seller.

